Observations from an Airport – Surface Routing and Guidance

Royal Aeronautical Society
Airfield Action Forum 2013

Thorsten Astheimer, Fraport AG
Overview

Frankfurt Airport today

Operational Changes and new Technologies

Investments & Benefits

Challenges & Outlook
Frankfurt Airport – some figures

Traffic statistics 2012 (in mio pax)

1. London Heathrow 70,0
2. Paris CDG 61,6
3. Frankfurt 57,5
4. Amsterdam 51,0
5. Madrid 45,2

A typical day in FRA:

- 1500 aircraft movements (max)
- 94 movements / h (max)
- 155,000 passengers
- 77,000 pieces of baggage
- 6,200 metric tons of cargo
- 397 trains serving the airport
Frankfurt Airport – Ground Traffic Control

Fraport Apron Control
Surface Management - a little Flashback

Situation in FRA 1998:
- 416,000 mvt. / a (1,200 / day + few tow mvt.)
- SMR and some cameras are the only sensors available for traffic surveillance
- flight data is available in a separate airport operational database (AODB)
- Controller must build his traffic-picture from Outside view, cameras, SMR and database

Situation today:
- 482,000 mvt. / a (1,500 / day + 150 tow mvt.)
- A-SMGCS integrates all relevant data from radars, multilateration detection system & airport database and A-DSB on one screen
- Controller has one comprehensive picture with position & ID of all aircraft and relevant vehicles
- All communication still by voice and switching of lighting and stop-bars manual (separate HMI)
Current and future Operating Environment

Current operating environment in FRA:

- Opening of 2 new Apron Control Towers
- Increased traffic complexity in FRA (opening of new runway and new terminal pier)
- Strong focus on punctuality and predictability (introduction of A-CDM, night curfew, …)
- Outsourcing of Apron Control units as a consequence of strike action in 2012

The SESAR Concept of Operations:

- Airports will be integrated into the network operating with an Airport Operations Plan (AOP) and Network operations Plan (NOP)
- This will involve a transition from time-based to performance-based operations
- One continuous aircraft trajectory including the “ground sector” of the flight as Airport Transit View

Growing need for planning support in surface management!
Surface Management – the concept

Ground Trajectory Management:

- Based on position data and aircraft ID from the surveillance system the Surface Management Tool (SMAN) proposes a surface route for every inbound and outbound-flight, the **Airport Transit View**
- By linking the ATV to the trajectory of the inbound and outbound flight a continuous trajectory for each airframe is established
- In the final stage of implementation the surface route is transmitted to the pilot by datalink and / or selective switching of airfield lighting and stop-bars (“Follow the Green”)
Surface Management – operational changes

Controller:

– Reduced voice communication & switching of R/T channels (⇒ less communication errors)
– Usage of only one HMI for all tasks (⇒ increased situational awareness)
– Shared visibility of routes and intentions (⇒ seamless coordination between controllers)
– Role of the controller changes from controlling to managing the flight (⇒ Change Management !)

Pilot:

– Increased situational awareness (⇒ less communication errors, route deviations and incursions)
Surface Management – technology investments

<table>
<thead>
<tr>
<th>Surveillance</th>
<th>Detecting position and ID of aircraft and vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflict Detection & Alerting</td>
<td>Conflict detection and mitigation Alerting of pilots & controllers</td>
</tr>
<tr>
<td>Routing</td>
<td>Generating aircraft ground trajectory</td>
</tr>
<tr>
<td>Planning</td>
<td>Planning the overall traffic situation</td>
</tr>
<tr>
<td>Guidance by Airfield Lighting</td>
<td>Individual switching of airfield lighting and stop-bars</td>
</tr>
<tr>
<td>Guidance by Airfield Lighting</td>
<td>Transmission of routing information to cockpit display</td>
</tr>
<tr>
<td>Surveillance System and Sensor Data Fusion</td>
<td>(⇒ baseline A-SMGCS Level 1)</td>
</tr>
<tr>
<td>Additional sensors for conformance monitoring</td>
<td>Conflict detection and alerting module (⇒ baseline A-SMGCS Level 2)</td>
</tr>
<tr>
<td>Surface Management System (SMAN) incl. HMI</td>
<td></td>
</tr>
<tr>
<td>Integration of SMAN with other planning systems (⇒ AMAN, DMAN, DCB-tool)</td>
<td></td>
</tr>
<tr>
<td>Single-lamp-control for airfield lighting, optionally LED lighting (⇒ “Follow the green” concept)</td>
<td></td>
</tr>
<tr>
<td>Additional signs in the maneuvering area</td>
<td></td>
</tr>
<tr>
<td>Datalink infrastructure for transmission to cockpit (⇒ no suitable systems available yet)</td>
<td>Taxi display or EFB in the cockpit</td>
</tr>
</tbody>
</table>
Investments and expected benefits

Investments:
- Technology investments incl. tuning, maintenance, etc. (⇒ *May be high for new airfield lighting*)
- Change management and staff training (⇒ *Long and complicated change process*)
- Standardisation and certification (⇒ *May take long depending on parties involved*)

Benefits:
- Increased situational awareness for pilots, controllers, management units (⇒ *Safety*)
- Reduction of controller workload (⇒ *Efficiency*)
- Increased predictability / better adherence to planning (⇒ *Predictability*)
- Reduced emissions & in some cases reduced taxi times (⇒ *Environment*)
- Reduced operating costs with usage of LED-lighting (⇒ *Cost*)
Conclusions & Outlook

Surface Management is an important building block to improve operational efficiency at complex airports.

Main difficulties are:
- Substantial investments (adaptation of airfield lighting)
- Difficult Change Management Process
- Potentially long duration of standardisation & certification activities

Main benefits for airports are:
- Increased situational awareness
- Reduction of controller workload
- Increased predictability

In the coming 5-10 years more big airports will be equipped.
Any Questions ?!?